
.0A06
1 6 NEGlE.IAELLON Ut

4
lv o CNURCYCN pISBUR'6 P DEPT OFCOMpUT F p

CA N E l~ S~ c j CoB N CUR
N 0 76 C O37 0

OCT 79 , T KUNS,

uWLASSIFIE E C 4.S7916

MICROCOPY RESOLUTION TEST CHAT •

NATIdftAI BUREAU OF STAt D~AROS-196A-A

112.8f

I[JI25 1111 4 Jil

.. -------

A~

4, ,pa

Z 4-~

\44,

V44

.2

-44 4'4~4 g

DISIUSTIO S*4
4 4 ~ ', 4: ~T'4EMENT A

444o~ for publi ti
4

' f ,-
Distribution Unlimited'

. .-- 7 .9-49- -- 71

On Optimistic Methods for
Concurrency Control

. T. Kung and John T. Robinson

May 1979

(Last revised October 1979)

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

.1 ABSTRACT

Most current approaches to concurrency control in database systems rely on locking of data

objects as a control mechanism. In this paper, two families of non-locking concurrency

controls are presented. The methods used are 'optimistic' in the sense that they rely mainly

on transaction backup as a control mechanism, "hoping' that conflicts between transactions

will not occur. Applications where these methods should be more efficient than locking are

discussed.

Copyright -C- 1979 by H. T. Kung and John T. Robinson

This research is supported in part by the National Science Foundation under Grant
MCS 78-236-76 and the Office of Naval Research under Contract N00014-76-C-0370.

DTIC
ELECTE

DISTRIBUTION STATEMENT Aa

I Distribution Unlimited S

SECTION I INTRODUCTION PAGE I

1. Introduction

Consider the problem oft'providing shared' access to a data structure organized as a

directed graph, I.e., a collection of nodes where each node consists of some values local to

that node and some pointers to-other nodes. Certain distinguished nodes, called the roots,

are always present, and'access to any node"other than a root Is gained only by first

accessing a root and then following pointers to that node. Any sequence of accesses to the

data structure that preserves the integrity constraints of the data is called a trwuasation (see,
e.g. [5]). . ,.

If our goal is to maximize fhe throughput of. accesses to the data structure, then there are
at least two cases where highly concurrent access- Is desirable: '

- The amount of data is sufficiently great that at any given time only a fraction of
the data structure can be present in primary memory, so that It is necessary to
swap parts of the data structure from secondary memory as needed.

- Even if the entire data structure can be present in primary memory, there may

be multiple processors.

In both cases the hardware will be under-utilized if the degree of concurrency is too low.

However, as Is well-known, unrestricted concurrent access to a shared data structure will

in general cause the integrity of the data structure to be lost. Most current approaches to

this problem involve some type of locking. That is, a mechanism is provided whereby one

process can deny certain other processes access to some portion of the data structure. In

particular,1a lock may be associated with each node of the directed graph, and any given

process is required to follow some locking protocol, so as to guarantee that no other process

can ever discover any lack of integfity In the data structure temporarily caused by the given

process.-

The locking approach has the following Inherent disadvantages:

1. Lock maintenance represents an overhead that is not present in the sequential
case. Even read-only transactions (queries), which cannot possibly affect the
integrity of the data, must In general use locking In order to guarantee that the
data being read are not modified by other transactions at the same time. Also, if
the locking protocol is not deadlock free, deadlock detection must be considered
to be part of lock maintenance overhead. In the case of System R [11 It has
been noted that lock.maintenance represents 102 of total execution time (6.

2. There are no'general purpose deadlock-free locking protocols for directed graph Ate setim
access algorithms that; always provide high concurrency. Beca of this, some i if s o, 0

research has been directed at developing special purpose locking protocols for r
various special case "of the general directed graph structure, access algorithms,

ftfI N I JAVILA CMe

OW. A /, PC

PAC 2 INTROM M SECTO I

and integrity criteria. In the case of B-trees (21 at least nine locking protocols
have been proposed E3, 4, 10, 11, 141

3. In the case that large parts of the data structure are on secondary memory,
concurrency is significantly lowered whenever it is necessary to leave some
congested node locked (a congested node is one that Is often accessd e.g. a
root) while waiting for a secondary memory access.

4. To allow a transaction to abort Itself when mistakes occur, locks cannot be
released until the end of the transaction. This may *gain significantly lower
concurrency.

5. Most important for the purposes of this paper, lcking ma7 be neo-ery #A al
only in the worst cae. Consider the following simple example: the directed
graph consists solely of roots, and each transaction involves one root only, any
root equally likely. Then if there are i roots and two processes executing
transactions at the same rate, locking is rasl7 needed (if at all) every n
transactions, on the average.

In general, one may expect the argument of 5) to hold whenever a) the number of nodes In

the graph is very large compared to the total number of nodes involved in all the running

transactions at a given time, and b) the probability of modifying a congested node Is small. In
many applications, a) and b)"are designed to hold (see Section 6 for the B-tree application).

Research directed at findipg deadlock-free locking protocols may be men as an attempt to
lower the expense of concurrency control by eliminating transaction backup as a control

mechanism. In this paper W6 consider the converse problem, that of eliminating locking. We

propose two families of concurrency controls that do not use locking. These methods are
"optimistic* in the sense that they rely for efficiency on the hope that conflicts between
transactions will not occur. If 5) does hold, such conflict will be rare. This approach also has
the advantage that it Is completely general, applying equally well to any shared directed

graph structure and associated access algorithms. Since locks ore not used, It is

deadlock-free (however, starvation is a possible problem, a solution for which we discuss). It

Is also possible using this approach to avoid problem 3) and 4) above. Finally, If the
transaction pattern becomes query dominant (I.e., most transactions re read-only), then the

concurrency control overhead becomes almost totally negligible (a partial solution to problem
1)). • .

The Idea behind this optimistic approach Is quite simple, and may be summarized as follows:

-Since reading a value or a pointer from a node can never cause a loss of
Integrity, reads are completely unrestricted (however, returning a result from a
query Is considered to be equivalent to a write, and so is subject to validation as
discussed below).

SECTION I INTRODUCTION PAGE 3

Writes are severely restricted. It is required that any transaction consist of two
or three phases: a read phase, a vaUdatiao phase, and a possible write phase.
During the read phase, all writes take place on local copies of the nodes to be
modified. Then, if it .can be established during the validation phase that the
changes the transaction made will not cause a loss of Integrity, the local copies
are made global in the write phase. ! In the case of a query, it must be
determined that the. rqpult the query would.return Is actually correcL The step
in which it Is determined that the transaction will not cause a loss of Integrity (or
that it will return the Correct result) Is called vaidaion.

read-. validation wiits

T __*- -) -i

.... .time

Figure 1. The three phases of a transaction T

If; In a locking ipproachlIocking is only necessary in the.worst case, then In an optimistic

approach validation will fall also only in the worst case. If validation does fail, the transaction

will be backed up and start 'over again as a new transection. Thus, a transaction will have a

write phase only If the preceding validation succeeds.

In Section 2 we discuss in more detail the read and write phases of transactions. In

Section 3 a particularly strong form of validation is presented. -The correctness criteria used

for validation are based on the notion of serial equivalence E5, 13, 15. In the next two

sections concurrency controls are presented that rely on the serial equivalence criteria

developed in Section 3 for validation. The family of concurrency controls in Section 4 have

serial final validation steps, while the concurrency controls of Section 5 have completely

parallel validation, at however higher totl cost. In Section 6 we analyze the application of

optimistic methods to controlling concurrent Insertions In B-trees. Section 7 contains a

summary and a discussion of future research.

2. The Reed and Write Phases

In this section we briefly discuss how the concurrency control can support the read and

write phases of user programmed transactions (In a manner Invisible to the user) and how

this can be Implemented efficiently. The validation phase will be treated In the following

three sections.
6.."l~

PACE 4 THE READ AD0 WRIT POOUE RCTION 2

We assume that an underlying system provides for the manipulation of objects of various
types, and that each nods of the directed graph structure Is an object. For simplicity, assume
all nodes are objects of the same type. Objects are manipulated by the following calls of the
concurrency control, where nt Is the name of an object, i s a parameter to the type manager,
and a' Is a value of arbitrary type (a' could be a pointer, ie. an object name, or dats)t

createcreate a new object and return its name.

de~se(h) delete object .

reed(IIJ) read Item £ of object at and return Its value.

Wrdte(,,4) write a' as item i of object at.

In order to support the read and write phases of transactions we will also use the
following calls:

COP7(Os) create a new object that is a copy of object x and return its name.

echafts(hI, ns2) exchange the names of objects oil and n2?.

The concurrency control Is invisible to the user; transactions awe written as If the above
calls were used directly. However, transactions are required to use the syntactically Identical
calls teret, Mdelee, tro"d and tworito to the concurrency control. For each transaction, the
concurrency control maintains sets of object names accessed by the transaction. These sets
are initialized to be empty by a tbegu call. The body of the user written transaction Is In
fact the read phase mentioned In the introduction; the subsequent validation phase does not
begin until after a toasd call. The semantics of the calls to the concurrency control wre as
follows:

tre"*e
(a :W create;
crestosoe - croate me U (Ink
RETURN as)

(IF as a reae st
THEN Wrice(s,4v)
WLE IF n * write sot

THEN Wrdae(cepde(aJ4a')I
ELSE (t - o n)

Dopki(Af] - I
of te set - writ* so U (a);
wrigt4l..pideaMalS))

SECTION 2 THE READ ANO WRITE PHASES PAGE 3

tr s(nJ) -
(road set: road $et U (n)
IF n write set
THEN RETURN read(copies(nhS)
ELSE RETURN read(O,

tdolet.(n) -
(delete set :- delete set U In))

Above, copies is an associative vector of object names, Indexed by object name. We see
that in the read phase, no global writes take place. Instead, whenever the first write to a
given object Is requested, a copy is made, and all subsequent writes are directed to the copy.
This copy is potentially global, but is Inaccessible to other transactions during the read phase
by our convention that all nodes are accessed only by following pointers from a root node. If
the node Is a root node, the copy is inaccessible since it has the wrong name (all transactions
"know" the global names of root nodes). It is assumed that no root node Is created or
deleted, that no dangling pointers are left to deleted nodes, and that created nodes become
accessible by writing new.pointers (these conditions are part of the integrity criteria for the

data structure that each transaction is required to individually preserve).

When the transaction completes, It will request its validation and write phases via a tend

call. If validation succeeds, then the transaction enters the write phase, which Is simplyt

* FOR a 4 writ* set DO-exchaagen, copies~nP.

After the write phase all written values become 'global*, all created nodes become accessible,
and all deleted nodes become Inaccessible. Of course some cleanup Is necessary, which we
do not consider to be part of the write phase since It does not Interact with other
transactions:

(FORa a(delete set DO delete(n,,
FOR a 4 writ# set DO d e(o pdsn])).

Similar types of cleanup may be necessary for transaction backup, which we do not consider
in detail here.

Note that since objects are virtual (objects are referred to by name, not by physical

PACE 6 TIE KAO AND VWA PASS SECTION 2

address) the eseniae operation, and hence the write phase, can be made quite feet:
essentially, all that is necessary is to exchange the physical address parts of the two object

descriptors.

Finally, we note that the concept of two-phase transactions appears to be quite valuable
for recovery purposes, since at the end of the read phase, al changes that the transaction
intends to make to the data structure are known.

3. The Validation Phase

A widely used criterion for verifying the correctness of concurrent execution of
transactions has been variously called serial equivalence (51 serial reproducibility [121 end
linearizablity 151 This criterion may be defined as follows:

Let transactions TlT 2 ,,Tn be executed concurrently. Denote an instance of the
shared data structure by d, and let D be the set of all possible d, so that each Ti
may be considered as a function:

Ti: 0 - D.

If the initial data structure Is d and the final data structure is df, the concurrent
execution of transactions Is correct if some permutation It of 11,2,..,n) exists such
that

df-T(n)OTn(n-!)O-oT,(2)oT,(t)(dj), (1)

where "oW is the usual notation for functional composition.

The Idea behind this correctness criterion is that, first, each transaction Is assumed to have
been written so as to individually preserve the Integrity of the shared data structure. That
Is, if d satisfies all integrity criteria, then for each Ti, Ti(d) satisfies all integrity criteria. Now.
if di satisfies all Integrity criteria and the concurrent execution of Ti,T2,..,Tn is serially

equivalent, then from (1), by repeated application of the integrity preserving property of
each transaction, df satisfies all Integrity criteria. Serial equivalence Is useful as a
correctness criterion since it is in general much easier to verify that a) each transaction
preserves integrity and b) every concurrent execution of transactions is serially equivalent,
then it is to verify directly that every concurrent execution of trMeactions preserves
integrity. In fact, it has been shown in [81 that serialization is the weakest criterion for
preserving consistency of a concurrent transaction system, even if complete syntatic
information of the system is available to the concurrency control. However, if semantic
information Is availale, then other approaches may be more attractive (see, el.g, (7, 9]).

SECTION a.. VALIDATION OF SERIAL E.IVALENC PAGE E

3.1. Validation of Serial Equivalence

The use of validation of serial equivalence as a concurrency control Is a direct application

of condition (1) above. However, in order to verify (1), a permutation n must be found. This

is handled by ezp/citly assigning each transaction Ti a unique Integer tranactioa number W)

during the course of Its execution.' The meaning of transaction numbers In validation is the

following: there must exist a serially equivalent schedule in which transaction Tj comes

before transaction TI whenever t(j) < t(t). This can be guaranteed by the following validation

condition: For each transaction Ti with transaction number tI) and for all Tj with tJ) -c t).

one of the following three conditions must hold (see Figure 2).

1. Tj completes its write phase before TI starts its read phase.

2. The write set of Tj does not intersect the read set of Ti, and Tj completes Its
write phase before Ti starts Its write phase.

3. The write set of T i does not Intersect the read set or the write set of Ti, end Tj
completes Its read phase before T completes its read phase.

T, I - (-- ---
(1) F -(- - "'

Ti Ik - - -- - --
(2)

T

T, I(--)--
(3) (31 ~Tjl --

Figure 2. Possible interleaving of Ti and Tj

Condition 1) states that Tj actually completes before T i starts. Condition 2) states that the

writes of Tj do not affect the read phase of TI, and that Tj finishes writing before T I starts

writing, hence does not overwrite T i (also, note that Ti cannot affect the road phase of Tj)

Finally, condition 3) is similar to condition 2), but does not require that Tj finish writing

before T I starts writing; it simply requires that Tj not affect the read phase or the write

phne of T i (again, note that T I cannot affect the read phase of Tj by the last pert of the

condition). See [13] for a set of similar conditions for serialization.

PAGE a ASSIGNING TRANSACTION NUMRJ 9ECTION U

3.2. Assigning Transaction Numbers

The first consideration that arises in the design of concurrency controls that explicitly

assign transaction numbers is, how should transaction numbers be assigned? Clearly they

should somehow be assigned in order, since if Tj completes before T, starts, we must have

Kj)<i). Here we use the simple solution of maintaining a global integer counter TNC

(transaction number counter); when a transaction number is needed, the counter is

incremented, and the resulting value returned. Also, transaction numbers must be assigned

somewhere before validation, since the validation conditions above require knowledge of the

transaction number of the transaction being validated. On first thought, we might assign
transaction numbers at the beginning of the read phase however, this is not optimistic (hence

contrary to the philosophy of this paper) for the following reason. Consider the case of two

transactions, T1 and T2 , starting at roughly the same time, assigned transaction number a and
n+l, respectively. Even If T2 completes its read phase much earlier than T1 , before being

validated T2 must wait for the completion of the read phase of TI, since the validation of T2

in this case relies on knowledge of the write-set of T1. See Figure 3. In an optimistic

approach, we would like for transactions to be validated immediately if at all possible (in

order to improve response time). For these and similar considerations we assign transaction
numbers at the end of the read phase. Note that by assigning transaction numbers In this

fashion the lest part of condition 3), that Tj complete its read phase before T, completes its

read phase If t(i)(), Is automatically satisfied.

__________ _ " - t(2) -n

Figure3. T2 waits for Tj In

33..Some Practical Conslderations

Given this method for assigning transaction numbers, consider the case of a transaction T

that has an arbitrarily long read phase. When this transection Is validated, the write sets of

all transactions that completed their read phase before T but had not yet completed their

write phase at the start of 1 must be examined. Since the concurrency control can only

maintain finitely many write sets, we have a difficulty (this difficulty does not wise if

transaction numbers are assigned at the beginning of the read phase). Clearly, If such

SECTION a3 SOME PRACTICAL CONSIDERATIONS PAGE 1

transactions are common, the assignment of transaction numbers described above Is

unsuitable. Of course, we take the optimistic approach and assume such transactions ar*
very rare; still, a solution is needed. We solve this problem by only requiring the
concurrency control to maintain some finite number of the most recent write sets, where the

* number is large enough to validate almost all transactions (we say write set a is more recent
than write set b if the transaction number associated with a is greater than that associated
with b). In the case of transactions like T, if old write sets are unavailable, validation fails,
and the transaction is backed up (probably to the beginning). For simplicity, we present the
concurrency controls of the next two sections as if potentially infinite vectors of write sets
were maintained; the above convention is to be understood to apply.

One last consideration must be mentioned at this point, namely, what should be done when
validation fails? It will be determined during validation exactly which objects were "dirtied',

i.e., modified by transactions with transaction numbers less than the transaction number of
the transaction being validated after the start of the read phase. The transaction will then
be backed up to the earliest such point and continued, receiving a new transaction number at
the completion of the read phase. Now a new difficulty arises: what should be done in the
case that validation repeatedly fails? Under our optimistic assumptions, this should happen
rarely, but we still need some method for dealing with this problem when It does occur. A
simple solution is the following- we associate a lock with the transaction number counter, and
this lock can be either read-locked or write-locked (read-locks lock out only write-locks;
write-locks lock out all other locks). Normally, the concurrency control brackets access to the
transaction number counler with a read lock-unlock pair. However, If the concurrency control
detects a "starving* transaction (this could be detected by keeping track of the number of
times validation for a given transaction fails), the transaction is restarted, this time using a.
write lock, which is not unlocked until the transaction is validated. When the write-lock Is
finally granted (standard techniques can be used to ensure that a write-lock does not cause

starvation), all subsequent transactions will be locked out, until the "starvinf= transaction can
run to completion.

4. Serial Validation

In this section we present a family of concurrency controls that are an Implementation of
validation conditions 1) and 2) of the previous section. Since we are not using condition 3),
the last part of condition 2) implies that write phases must be serial. The simplest way to
implement this is to place the assignment of a transaction number, validation, and the
subsequent write phase all in a critical section. In the following, we bracket the critical
section by "-e and ",!. The concurrency control is as follows:

PAGE 10 SERIAL VALIDATION SECTION 4

tbeift -

(creat see :- empty;
reed set : empty;
write set :- empty;
delete set .- empty
Stan tn :- TNC)

tend -
(<finish tn :- TNC;
a Ud :- TRUE;

FOR t FROM start tn+I TO fminsh tn DO
IF (write set of tranaction with tr ns. A& t

intersects read set)
THEN valid :- FALSE;

IF v&id
THEN ((write phase); TNC-TNC+I; tou-TNC) ;
IF vaid
THEN (clenuap)
ELSE (backup))

In the above, the transaction is assigned a transaction number via the sequence TNC :-
TNC.1; ta :- TNC. An optimization has been made in that transaction numbers are assigned

only if validation Is successful. We may imagine that the transaction is "tentatively" assigned

a transaction number of TNC l with the statement finish tn .- TNC, but that If validation fails,
this transaction number is freed for use by another transaction. By condition 1.) of Section 3,
we need not consider transactions that have completed their write phase before the start of
the read phase of the current transaction. This is implemented by reading TNC In tbegi r
since a "real" assignment of a transaction number takes place only after the write phase, it is

guaranteed at this point that all transactions with transaction numbers less than or equal to

start ta have completed their write phase.

The above is perfectly suitable In the case that there is one CPlJ and that the write phase

can usually take place in primary memory. If the write phase often cannot take place in

primary memory, we probably went to have concurrent write phases, unless the write phase

Is still extremely short compared to the read phase (which may be the case). The

concurrency controls of the next section are appropiate for this. If there are multiple CPU's,

we may wish to introduce more potential parallelism in the validation step (this Is only
necessary for efficiency if the processors cannot be kept busy with read phases, i.e. if

validation is not extremely short as compared to the read phas). This can be done by using
the solution of the next section, or by the following method. At the end of the read pheae,
we Immediately read TNC before entering the critical section, and assign this value to mid tn.

SECTION 4 SERIAL VALIDATION PAGE I I

It is then known that at this point the write sets of transactions

start tn+l, start tn., -, mid tn must certainly be examined In the validation step, and this can
be done outside the critical section. The concurrency control Is thus:

tend.,
(mid tn :- TNC;
vUalid :- TRUE;
FOR t FROM start tn+1 TO mid tn DO

IF' (write set of transaction with trans. no. t
intersects read set)

THEN vad :- FALSE;
finish tn :- TNC

FOR t FROM mid tn+1 TO rdjh tn DO
IF (write set of transaction with trans. no. t

intersects read sit)
THEN valid :- FALSE; 1

IF vaUd
THEN ((write phase) TNC-TNC.I; tra-TNC) >;
IF v&d
THEN (cleanup)
ELSE (backup))

The above optimization can be carried out a second time: at the end of the preliminary
validation step we read TNC a third time, and then, still outside the critical section, check the

write sets of those transactions with transaction numbers from mid t#&+1 to this most recent

value of TNC. Repeating this process, we derive a family of concurrency controls with

varying numbers of stages of validation and degrees of parallelism, all of which however have
a final indivisible validation step and write phase. The idea is to remove varying parts of the

work done in the critical section outside the critical section, allowing greater parallelism.

Until now we have not considered the question of read-only transactions, or queries. Since
queries do not have a write phase, it is unnecessary to assign them transaction numbers. It

Is only necessary to read TNC at the end of the read phase and assign Its value to finish tn
validation for the query then consists of examining the write sets of the transactions with

transaction numbers start tn+l, start tn#2,., finish tn. Ihis need not occur In a critical

section, so the above discussion on multiple validation stages does not apply to queries. This
method for handling queries also applies to the concurrency controls of the next section.

Note that for query dominant systems, validation will often be trivial: it may be determined

that stant tn - finish tn, and validation Is complete. For this type of system on optimistic

approach appears Ideal.

.1 -

PAGE 12 PARALLEL VALIDATION SECTION 5

5. Parallel Validation

In this section we present a concurrency control that uses all three of the validation

conditions of Section 3, thus allowing greater concurrency. We retain the optimization of the

previous section, only assigning transaction numbers after the write phase If validation

succeeds. As in the previous solutions, TNC is read at the beginning and the end of the read

phase; transactions with transactions numbers start tn., sart ti*2., ..,Jiih tn all may be

checked under condition 2) of Section 3. For condition 3), we maintain a set of transaction
ids active for transactions that have completed their read phase but have not yet completed

their write phase. The concurrency control is as follows (beg n is as In the previous

section):

tend ,
(<Fnih tn :- TNC;
finish. active :- (Make a copy of active)
active :- active U lid of this transaction) >;
vaUd :- TRUE;
FOR t FROM start tn.1 TO finish tia DO

IF (write set of transaction with trans. no. t
intersects read set)

THEN valid :- FALSE;
FOR i (finish active DO

IF (write set of transaction Ti iftersect.
read set or write set)

THEN wld :- FALSE.
IF vid
THEN ((write phae)

<TNC :- TNC*!;
gt :- TNC,
active :- active - lid of this transaction) n
(cleaup))

ELSE ((cii-cie(dof transation)'; *-

(back p)))

In the above, at the end of the read phase active is the set of transactions that have been

assigned "tentative" transaction numbers less then that of the transaction being validated.

Note that modifications to active and TNC are placed together In critical sections so as to

maintain the Invariant properties Of active and TNC mentioned above. Entry to the first

critical section is equivalent to being assigned a "tentative transaction number.

One problem with the above is that a transaction in the set /hm active may Invalidate the

given transaction, even though the former transaction is itself invalidated. A partial solution

to this is to use several stages of preliminary validation, In a way completely analagous to the

......

5~~~A EISLE AIDTO

multistage validation described in the previous section. At each stage, a new value of TNC Is

read, and transactions with transaction numbers up to this value are checked. The final stage

then involves accessing actie as above. The idea is to reduce the size of at&@ by

performing more of the validation before adding a new transaction id to acti"e.

Finally, a solution Is possible where transactions that have been Invalidated by a

transaction in finish active wait for that transaction to either be invalidated, and hence

ignored, or validated, causing backup.1 However, this solution involves a much more
sophisticated process communication mechanism than the binary semaphore needed to

Implement the critical sections above.

6, Analysis of an Application

We have previously noted that an optimistic approach appears Ideal for query dominant

systems. In this section we consider another promising application, that of supporting

concurrent index operations for very large tree structured indexes. In particular, we examine

the use of an optimistic method for supporting concurrent Insertions In B-trees (see [2]).

Similar types of analysis and similar results can be expected for other types of

tree-structured indexes and index operations.

One consideration in analyzing the eficiency of an optimistic method Is the expected size

of read and write sets, since this relates directly to the time spent In the validation phase.

For B-trees, we naturally choose the objects of the read and write sets to be the pages of

the B-tree. Now even very large B-trees are only a few levels deep. For example, let a

B-tree of order m contain N keys. Then if m - 199 and N S 2xI0 8 -2, the depth Is at most

1+logloo((N+1)/2) < 5. Since insertions do not read or write more than one already existing

node on a given level, this means that for B-trees of order 199 containing up to almost two

hundreJ million keys, the size of a read or write set of an Insertion will never be more than

4. Since we are able to bound the size of read and write sets by a small constant, we

conclude that validation will be fast, the validation time essentially being proportional to the

degree of concurrency.

Another important consideration is the time to complete the validation and write phases as

compared to the time to complete the read phase (this point was mentioned in Section 4).

B-trees are implemented using some paging algorithm, typically least recently used page

replaced first. The root page and some of the pages on the first level we normally In

IT@I pssiUty was pomted out by Jam Sam

PAGE 14 ANALYSS OF AN APPLICATION SECTION 0

primary memory; lower level pages usually need to be swapped in. Since Insertions always

access a leaf page (here, we call a page on the lowest level a leaf page), a typical Insertion

to a B-tree of depth d will cause d-I or d-2 secondary memory accesses. However, the

validation and write phases should be able to take place in primary memory. Thus, we expect

the read phase to be orders of magnitude longer than the validation and write phases. In
fact, since the "densities" of validation and write phases are so low, we believe that the serial

validation algorithms of Section 4 should give acceptable performance In most cases.

Our final and most important consideration Is determing how likely it Is that one Insertion

will cause another concurrent insertion to be invalidated. Let the B-tree be of order m (m

odd), have depth d, and let in be the number of leaf pages. Now, given two insertions 11 and

12, what is the probability that the write set of 11 intersects the read set of 12? Clearly this

depends on the size of the write set of 11, and this is determined by the degree of splitting.

Splitting occurs only when an insertion is attempted on an already full page, and results In an

insertion to the page on the next higher level. Lacking theoretical results on the distribution

of the number of keys in B-tree pages, we make the conservative assumption that the

number of keys in any page is uniformly distributed between (r-I)/2 and m-1.2 We also

assume that an Insertion accesses any path from root to leaf equally likely. With these

assumptions we find that the write set of 11 has size i with probability:

Given the size of the write set of 11, an upper bound on the probability that the reed set

of 12 intersects the sub-tree written by 11 is easily derived by assuming the maximai number

of pages in the sub-tree, and Is:

Combining these, we find the probability of conflict pC satisfies:

2T e is •ea somiy aumption si nc It podkte stomve utlitfe. of M but hMestiul meiblt de east for
storage utilzatlon (101, whIch show that sten e utiition is AMout 691 SIme nodee m atM overo emnppthen m
our ssumptin Implies, this mulggt that the pnbwldy of soiftis we wa I hik

SECTION 6 . ANALYSIS OF AN APPLICATION PAGE I

c"- ii ?sLP
1Si_<d

For example, If d - 3, m - 199, and a - 10 we have Pc < .0007. Thus, we see that it Is

very rare that one insertion would cause another concurrent insertion to restart for large
B-trees. -

7. Conclusions

*A great deal of research has been done on locking approaches to concurrency control, but

as noted above, in practice two control mechanisms are used: locking and backup. Here we
have begun to investigate solutions to concurrency control that rely almost entirely on the

latter mechanism. We may think of the optimistic methods presented here as being

orthogonal to locking methods In several ways:

- In a locking approach, transactions are controlled by having them wait at certain
points, while In an optimistic approach, transactions are controlled by backing
them up.

- In a locking approach, serial equivalence can be proved by partially ordering the
transactions by first access time for each object, while in an optimistic approach,
transactions are ordered by transaction number assignment.

- The major difficulty In locking approaches is deadlock, which can be solved by -

using backup; in an optimistic approach, the major difficulty is starvation, which
can be solved by using locking.

We have presented two families of concurrency controls with varying degrees of
concurrency. These methods are definitely superior to locking methods for systems where

transaction conflict Is highlyunlikely. Examples include query dominant systems and very
large tree structured indexes. For these cases, an optimistic method will avoid locking

overhead, and may take full advantage of a multiprocessor environment In the validation

phase using the parallel validation techniques presented. Some techniques are definitely

needed for determining all instances where an optimistic approach Is better than a locking

approach, and in such cases, which type of optimistic approach should be used.

A more general problem Is the following: consider the case of a data base system where

transaction conflict is rare, but not rare enough to justify the use of any of the optimistic

approaches presented here. Some type of generalized concurrency control Is needed that

1 __ _- _

PACE 16 CONcUIlON sCmN

provides "just the right amount" of locking versus backup. Ideally, this should very n the
likelihood of transaction conflict In the system varies.

References

1. Astrehan at al. System R: Relational Approach to Database Management ACM Troe.
Database Systems 1, 2 (June 1976), 97-137.

2. Bayer, R. and McCreight, E. Organization and Maintenance of Large Ordered Indexes. Acaf
Inbormatca 1, 3 (1972), 173-189.

3. Bayer, R. and Schkolnick, M. Concurrency of Operations on 8-trees. Acts InJrnatio 9, 1
(1977), 1-21.

4. Ellis, C. S. Concurrent Search and Insertion in 2-3 Trees. 78-05-01, University of
Washington, Department of Computer Science, May, 1978.

5. Eswaran, KP., Gray, .N., Lore, R.A. and Traiger, LL The Notions of Consistency and
Predicate Locks in a Database System. Comm. ACM 19, 11 (November 1976), 624-633.

6. Gray, J. Notes on data base operating systems. Lecture Notes in Computer Scienoe 60.
Operating Systems, Ed. R. Bayer, R. M. Graham, and G. Seegmuler, Springer-Verlag. Berlin,
Germany, 1978, pp. 393-481.

7. Kung, .T. and Lehman, P.L A Concurrent Database Problem: Binary Search Trees.
Technical report CMU-CS-79-145, Dept. Computer Science, Carnegie-Mellon University. Also
to appear in ACM Trans. Database Systems.

8. Kung, .T. and Papadimitriou, C.H. An Optimality Theory of Concurrency Control for
Databases. Proc. ACM SICMO0 1979 Internationa Conference on Mfsmnswent of Oate,
May, 1979, pp. 116-126.

9. Lamport, L Towards a Theory of Correctness for Multi-user Data Base Systems.
CA-7610-0712, Massachusetts Computer Associates, Inc., October, 1976.

10. Lehman, P. L and Yao, S. 8. Efficient Locking for Concurrent Operations on B-Trees.
Submitted for publication.

11. Mller, R.E. and Snyder, L Multiple Access to 8-trees. Coal. Ino. sW ad $,
March, 1978. Preliminary version.

12. Papadlmitriou, C.H., Bernstein, PA and Rothnle, 1.. Computational Problems Related to
Database Concurrency Control. Conf. on Theoretald Computer Science, University of
Waterloo, 1977, pp. 275-282.

13. Papadlimitriou, C.H. Serilizability of Concurrent Updates. Harvard University. To appear
in Journad of the ACM.

14. Semadi, B. 8-trees in a System with Muitiple Users. Informsadka Proossng Letes S 4
(October 1976), 107-112.

--- - - - *-t-

REFERENCES PAGIE 17

15. Stearns, R.E, Lewis *PMl It and Rosenkrantz, D.J. Concurrency Control for Database
Systems. Proc. Sevienth Symp. Foundations of Computer Science, 1976, pp. 19-32.

16. Yao, A. On random 3-2 frees. Act& Znformiatie, 2, 9 (1978), 159-170.

SECUKITY CLASSVICA?14 OV 'IS59 111('11,00 bar& twvd

REPORT DOCUMENTATION PAGE BFRED CILE?'uC?:oNS~

W.j-otT U&EtLA---. GOV'I ACCESSION NO 3. RECIPICNT'S CATAL00G ID&~AE

(1 M3c-79-149 //II_____________
4. TITLE (a" subttao

ON~ OPTIMSTIC MERBDS FOR (XNUEN CTRLH

e LT4 Kung
SJohn T.Ilobinbon p47-,37

S. PERFORMING ORIGANIZATINd NAI.49 AND ADORIESS
Carnegie-Mellon UnvriyAREA 4 WORKC UNIT NUMBERS

Comute? Science Department t
Pittsburgh, PA. 15213

It. CONTROLLING OFFI1CE NAME ANO ADORIESS 11. REPORT DATE

Office of Naval Research My17
Arlington, VA. 22217 13. NuM@FR OF PAGES

19

(I A UNCIASSIFIED

11". MECkSIIAO OOWNGRAOING

16. DISTRIBUTION STATEMENT (of Shia Aourtj

DISTIBUTON SATMEN A

Apipzwvd in VbO inO

I?. STRIOUTIOW S? ATILMC1 fe (at inabtroo nrd In Sleek H0 dhifnt beat Repot)

Approved for public release; distribution unlimited

1S. SUPPI.IMENTANY NOTES

19. Kay WORDIS (CIIm m Ivna aV"ide 1180608.0 nmd Idemalt ar Nook momibl)

2L. ASTRACT (CantuSw on rowe 00de If aeeeeei and WD"ar N141& meej

IDO ' 1473 EtION Ot I Nov* OS OeSOLeTe CTSI
Sv~ 162-l..O4I IGUMgItV CLASSIFICATION6 OF TN.,l PAGE (fenm owe. 804e

